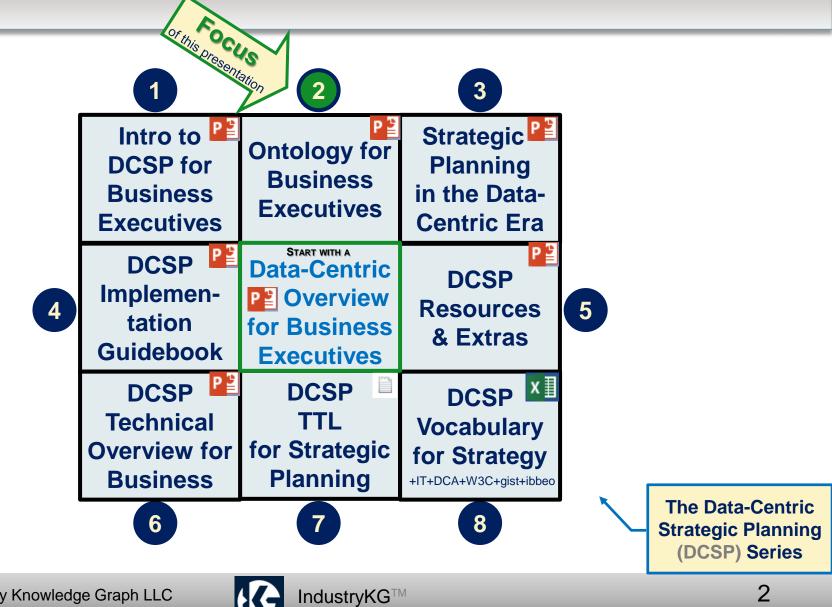
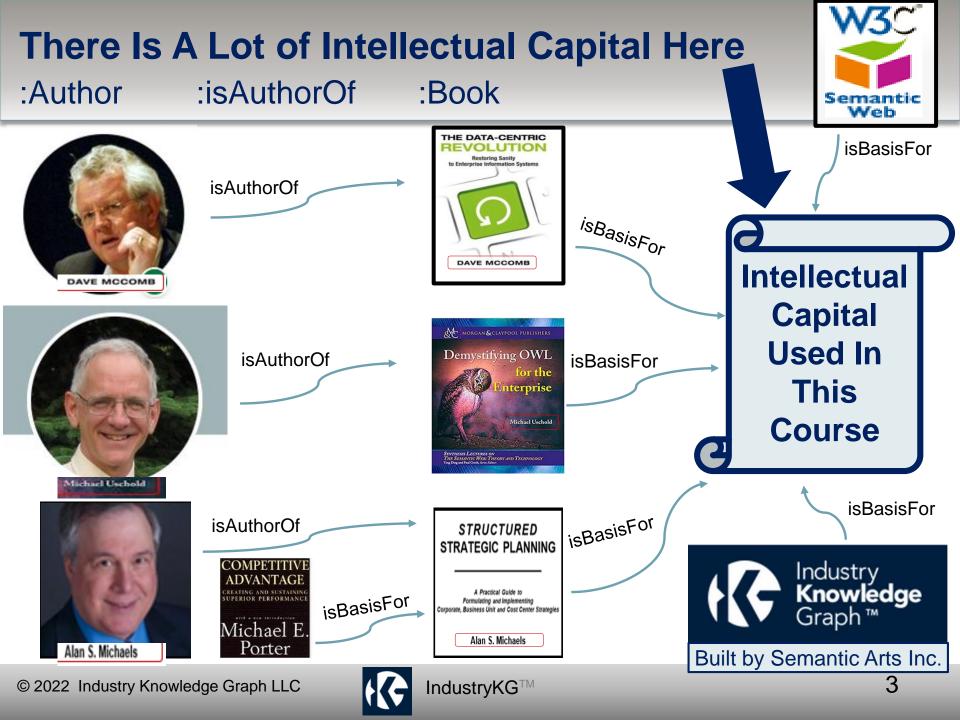
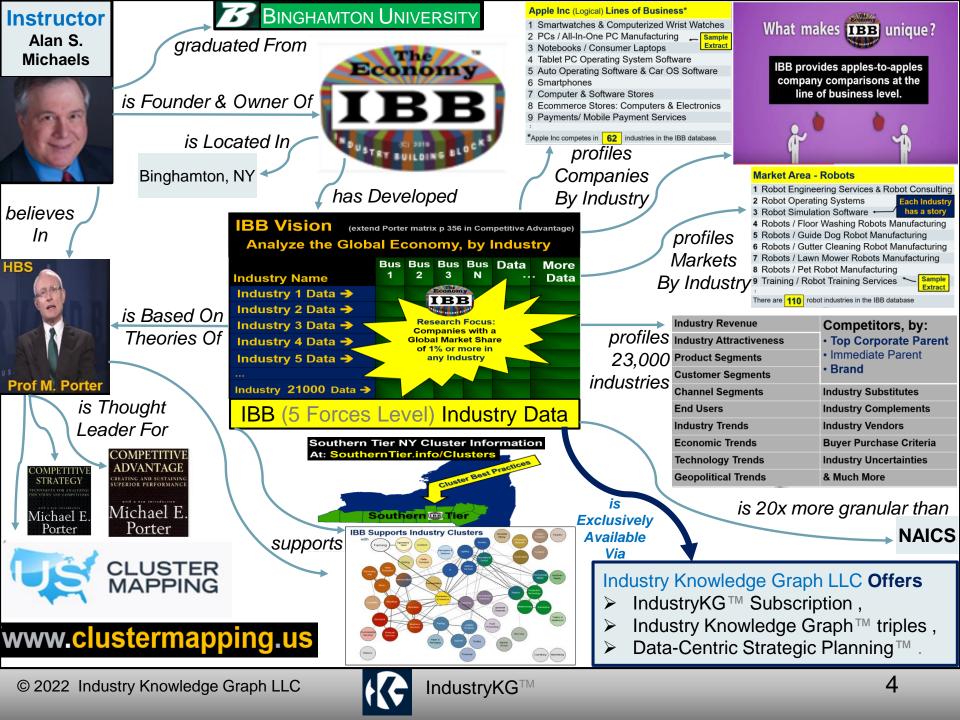
Industry Knowledge Graph LLC

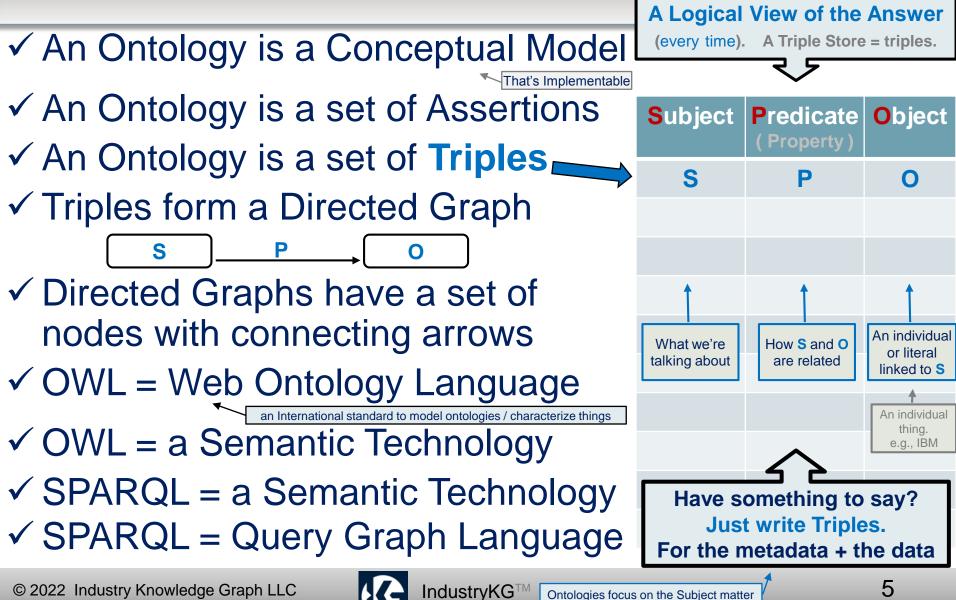
An Intro To Ontology for Business Executives

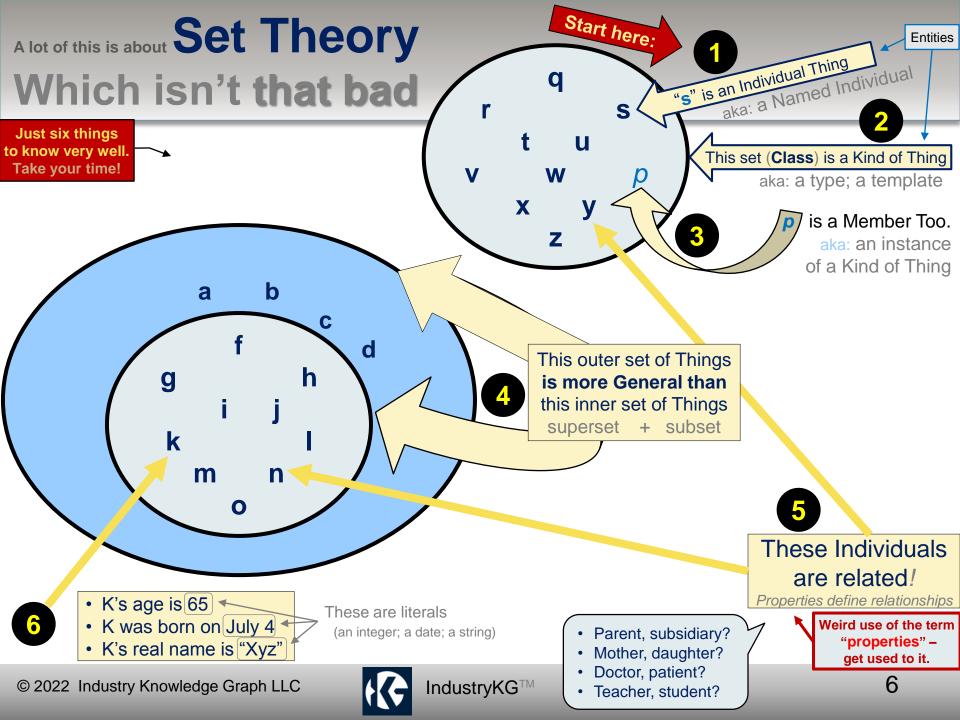
Home of the Industry Knowledge Graph solution for Business Execs™

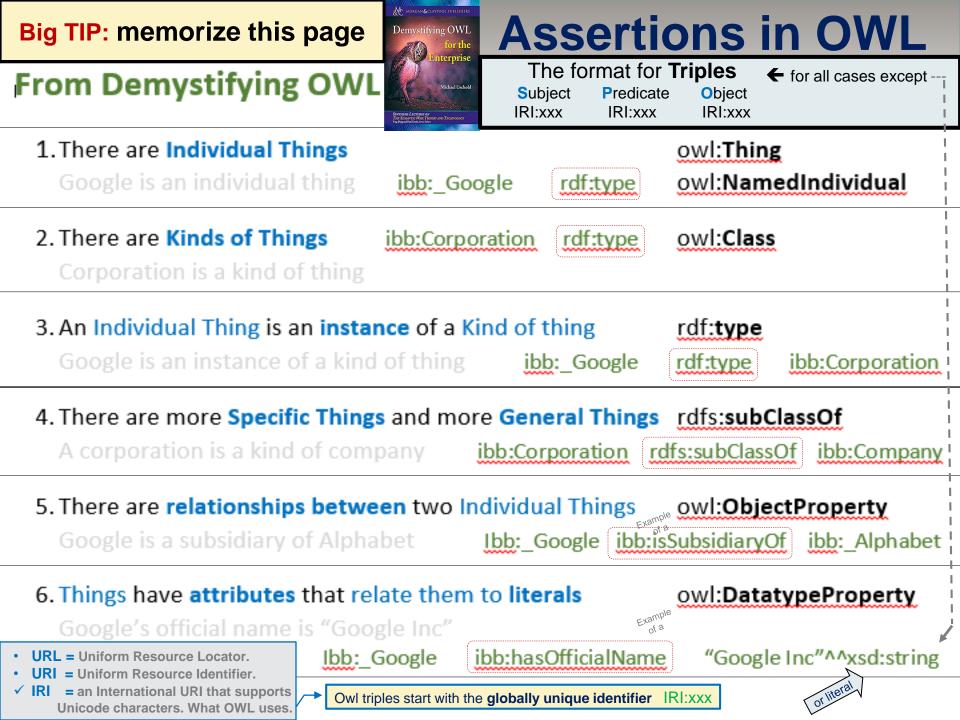

Industry Knowledge Graph LLC Educational Service for:


- ► IndustryKG[™] Subscribers
- Data-Centric Strategic Planning[™] Clients
- Semantic Arts Inc. Ecosystem Partners

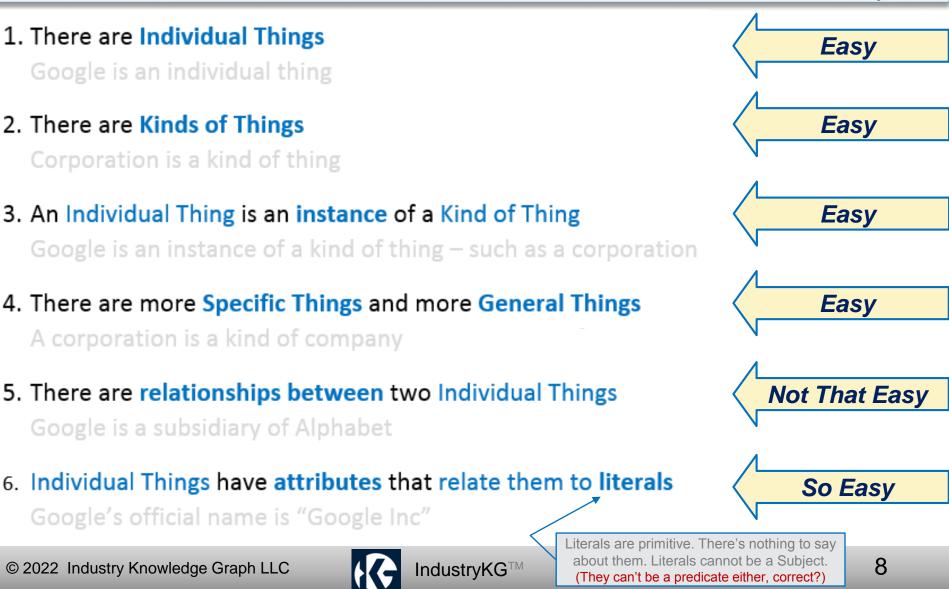

July 15, 2022 Instructor, Alan S. Michaels Director of Industry Research, Industry Knowledge Graph LLC

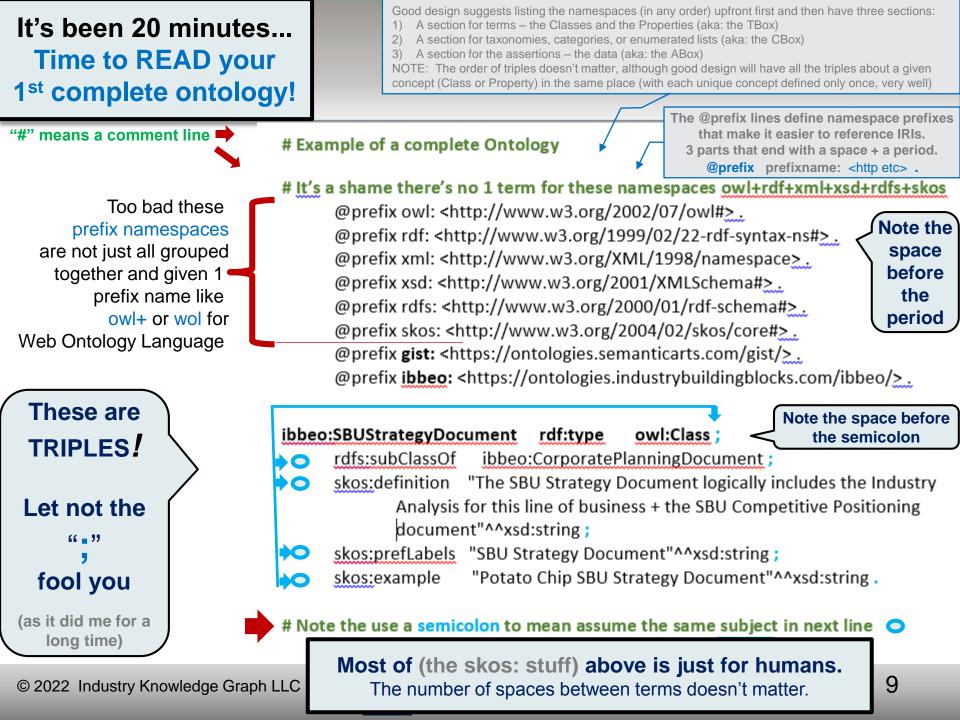

An Intro to Ontology for Business Execs

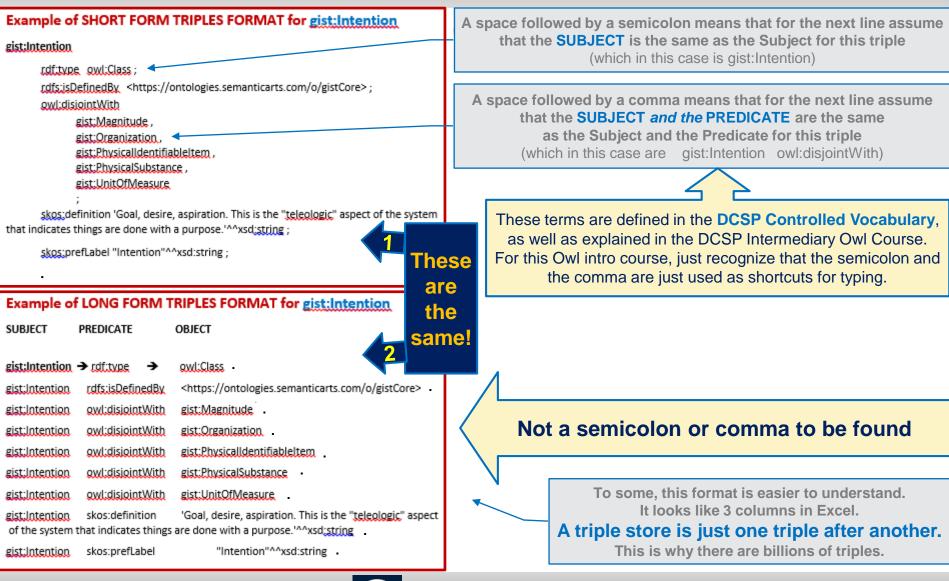




An Intro To Ontology for Business Execs






For Emphasis & To Highlight The ^ Simplicity

of Set Theory

What Do Semicolon & Comma Mean in OWL / RDF?

use an underscore for: Named Individuals

Some Conventions

JaneDoe

- use Upper Camel case for: Classes Organization
- use Lower Camel case for: Properties isMemberOf
 NOTE: no spaces between words The @prefix stuff for namespaces
- begin your ontology by listing the namespaces; then list all the metadata Terms (aka: TBox); -The vocabulary for talking about the subject matter then list all the taxonomies / Categories (aka:CBox); and then list the data Assertions (aka: ABox) Enumerated lists often

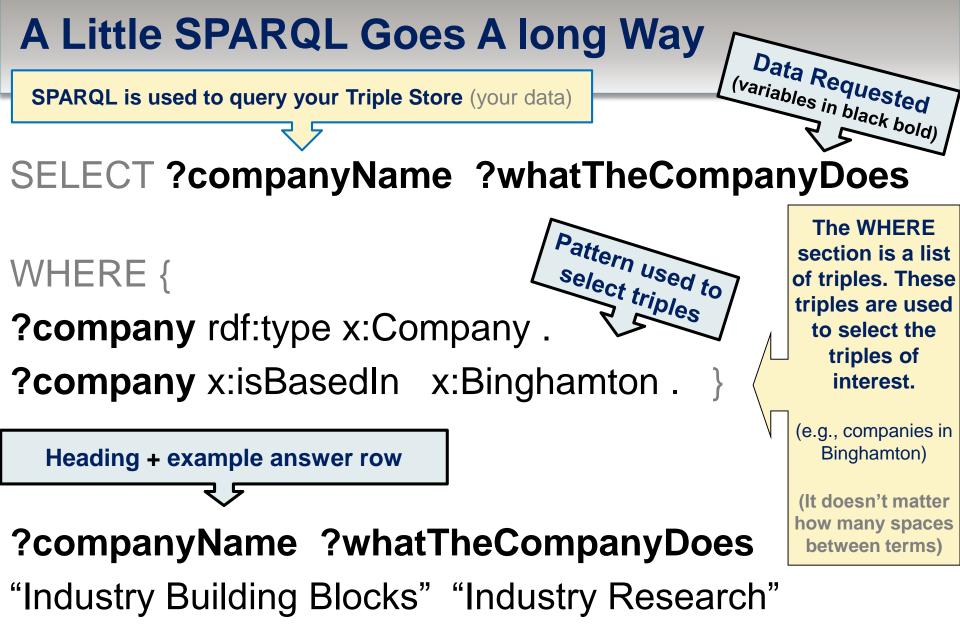
Remember earlier slide

on Set Theory

Reminder: "properties"

define the relationship etween two individuals

Some Hot Tips


- Each namespace adds to the vocabulary (just get used to it)
- P = Predicate = Property (in OWL) Property = Object Property or Data Property

Or sometimes:Annotation Property

- Although URIs are unique. two URIs can mean the sameAs
- Domain applies to the Subject. Range applies to the Object.
- Try very hard to reuse Classes + Properties, especially those carefully defined by the *(minimalist)* gist upper ontology
 - Stop the runaway proliferation of classes
 - Although these 'hot tips' are mostly for ontology novices, beware of 'professionals' who don't get the importance of minimizing classes (especially top-level orphan classes where clear definitions, restrictions, and disjointness bring downstream benefits)

I his tip, which is beyond novice territory, is provided to help business users control costs via a (data-centric) critical success factor.

More SPARQL

This is where ontologists and developers like to show off. Let them. Business execs should focus on: "SELECT" – What data do you want? "WHERE" – Which triples should be used based on a pattern you can describe "FILTER" – to remove stuff you're not interested in

	A	В	C
1	industryCount	organizationUri	organizationLabel
2	668	https://data.industrybuildingblocks.com/ibbeo/_Organization_1059000	International Business Machines
3	331	https://data.industrybuildingblocks.com/ibbeo/_Organization_1049963	Goya Foods Inc
4	321	https://data.industrybuildingblocks.com/ibbeo/_Organization_1027080	Conagra Brands Inc
5	271	https://data.industrybuildingblocks.com/ibbeo/_Organization_1064422	Koch Industries
6	252	https://data.industrybuildingblocks.com/ibbeo/_Organization_1082817	Oracle Corporation
7	243	https://data.industrybuildingblocks.com/ibbeo/_Organization_1053802	Hewlett Packard Enterprise
8	229	https://data.industrybuildingblocks.com/ibbeo/_Organization_1020872	Caterpillar Inc
9	216	https://data.industrybuildingblocks.com/ibbeo/_Organization_1033624	Dell Technologies Inc
10	202	https://data.industrybuildingblocks.com/ibbeo/_Organization_1096984	SAP AG
11	190	https://data.industrybuildingblocks.com/ibbeo/_Organization_1012347	BASF
12	189	https://data.industrybuildingblocks.com/ibbeo/_Organization_1071550	McCormick & Company
13	186	https://data.industrybuildingblocks.com/ibbeo/_Organization_1100461	Siemens AG
14	180	https://data.industrybuildingblocks.com/ibbeo/_Organization_1026176	Cognizant Technology Solutions
15	174	https://data.industrybuildingblocks.com/ibbeo/_Organization_1073529	Microsoft Corporation

prefix skos: <http://www.w3.org/2004/02/skos/core#> prefix gist: <https://ontologies.semanticarts.com/gist/> prefix ibbeo: <https://ontologies.industrybuildingblocks.com/ibbeo/> prefix ibbeox: <https://taxonomies.industrybuildingblocks.com/ibbeo/> prefix ibbeod: <https://data.industrybuildingblocks.com/ibbeo/>

Count how many industries each company is in

SELECT (count(?industry) as ?industryCount) ?organizationUri ?organizationLabel

WHERE {

?organizationUri rdf:type ibbeo:IbbOrganization .
?organizationUri skos:prefLabel ?organizationLabel .

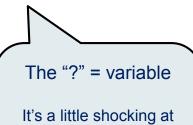
?organizationUri gist:categorizedBy ?organizationLevel .

?organizationLevel a ibbeo:OrganizationLevel .

?organizationUri gist:categorizedBy ibbeox: selectable .

Initially, (business execs should) focus on what questions you want answered. Let the ontologist construct the pattern used to select the data you want from the subset of triples you're interest in.

?organizationUri ^ibbeo:hasCompetingOrganization ?industry .


FILTER (

?organizationLevel IN (

ibbeox: OrganizationLevel Division, ibbeox: OrganizationLevel Subsidiary, ibbeox: OrganizationLevel TopParent

GROUP BY ?organizationUri ?organizationLabel

ORDER BY DESC(?industryCount) ?organizationLabel

It's a little shocking at first.... that the variable name can be a random list of characters (just not some special characters)

Data:

<http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> "SPARQL Tutorial" .

Query:

SELECT ?title
WHERE
{
 <http://example.org/book/book1> <http://purl.org/dc/elements/1.1/title> ?title .
}

This query, on the data above, has one solution:

Query Result:

```
title
"SPARQL Tutorial"
```


Data:

@pre	fix foaf:	< <u>http://xmlns.com/foaf/0.1/</u> > .
_:a _:b _:b	foaf:name foaf:mbox foaf:name foaf:mbox foaf:mbox	"Johnny Lee Outlaw" . <mailto:jlow@example.com> . "Peter Goodguy" . <mailto:peter@example.org> . <mailto:carol@example.org> .</mailto:carol@example.org></mailto:peter@example.org></mailto:jlow@example.com>

Query:

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox
WHERE
    { ?x foaf:name ?name .
        ?x foaf:mbox ?mbox }
```

Query Result:

name	mbox
"Johnny Lee Outlaw"	<mailto:jlow@example.com></mailto:jlow@example.com>
"Peter Goodguy"	<mailto:peter@example.org></mailto:peter@example.org>

Data:

```
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
```

```
_:a foaf:givenName "John" .
_:a foaf:surname "Doe" .
```

Query:

```
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ( CONCAT(?G, " ", ?S) AS ?name )
WHERE { ?P foaf:givenName ?G ; foaf:surname ?S }
```

Query:

name "John Doe"

Data:

@prefix org: <http://example.com/ns#> .
_:a org:employeeName "Alice" .
_:a org:employeeId 12345 .
_:b org:employeeName "Bob" .
_:b org:employeeId 67890 .

Query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX org: <http://example.com/ns#>
CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x org:employeeName ?name }

Results:

```
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
_:x foaf:name "Alice" .
_:y foaf:name "Bob" .
```

which can be serialized in RDF/XML as:

Data:

```
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .
:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .
```

3.1 Restricting the Value of Strings

SPARQL FILTER functions like regex can test RDF literals. regex matches only string literals. re

Query:

```
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { ?x dc:title ?title
        FILTER regex(?title, "^SPARQL")
    }
```

Query Result:

title "SPARQL Tutorial"

Regular expression matches may be made case-insensitive with the "i" flag.

Query:

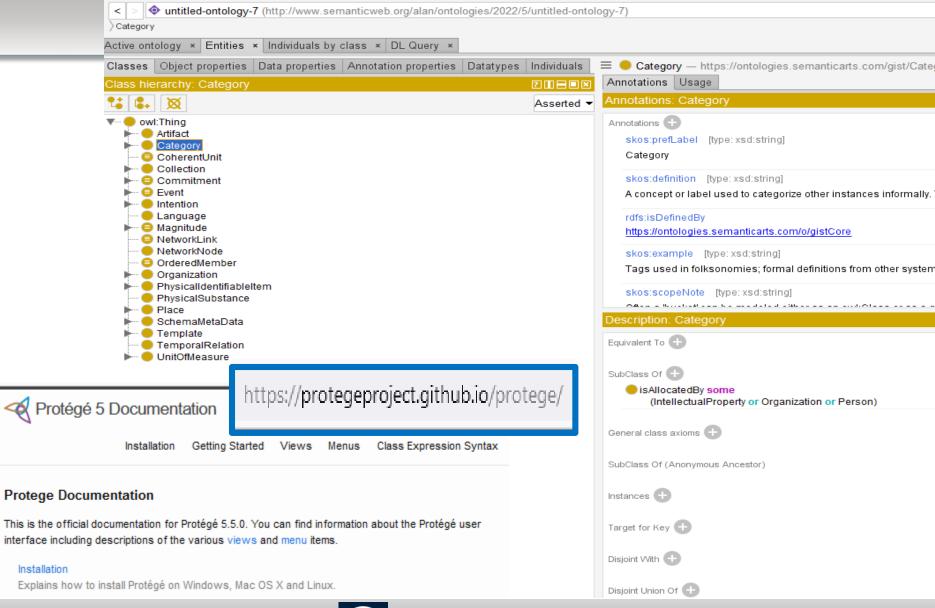
```
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?title
WHERE { ?x dc:title ?title
        FILTER regex(?title, "web", "i" )
        }
```

Query Result:

title "The Semantic Web"

 triple patterns called a basic graph pattern. Triple patterns are like RDF triples except that each of the subject, predicate and object may be a variable.

• Sometimes its good to look at the source, although the source often comes with a lot of baggage: https://www.w3.org/TR/sparql11-query/#docOutline

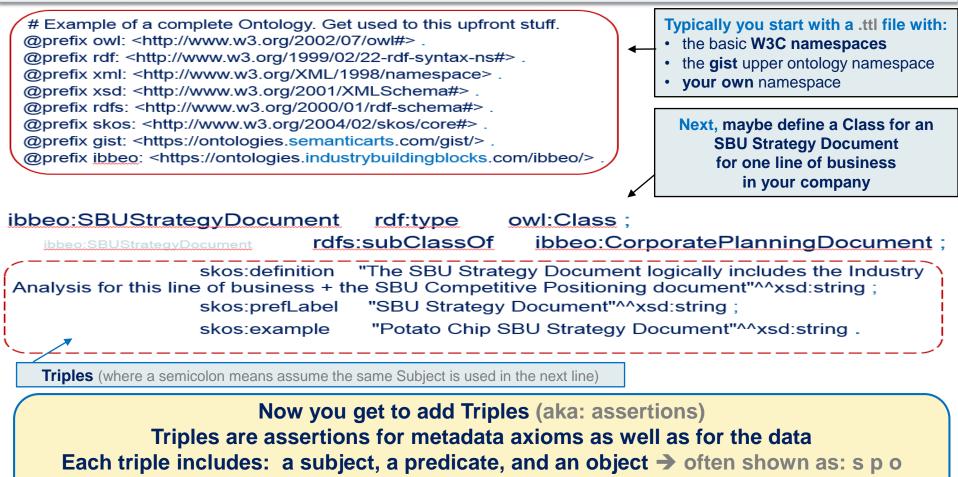

Get to Know Turtle

Browse] gistCore11.0.0.ttl Download File	
Lang: turtle v Theme: cobalt v □ prefix □ omit rdf:type □ subjects	
gistoccursti	
gist:isIdentifiedBy	^
gist:isMadeUpOf	SPARQL Pane (results in console)
gist:PlannedEvent	select * {?s ?p ?o}
Subjects: gist:PostalAddress	
Get All gist: ProductCategory	
Select to draw gist:ProductMagnitude	
gist: ProductSpecification	
gist: Project	Add Prefixes SPARQL query Clear Results
gist: Task	
Viz: dot v Fmt: png v raw	
	THOME
URL: https://raw.githubuserc Load URL To JSON-LD To Turtle Show Facts [repo	[HOME]
rdf:type	owl:Class
skos:definition	Any of many ways of categorizing products, including models, NATO product codes, and the like.
gist:ProductCategory skos:prefLabe rdfs:isDefinedE	Product Category
rdfs:subClassC	Of https://ontologies.semanticarts.com/o/gistCore
	gist:Category

Get to Know Protégé Ontology Editor +

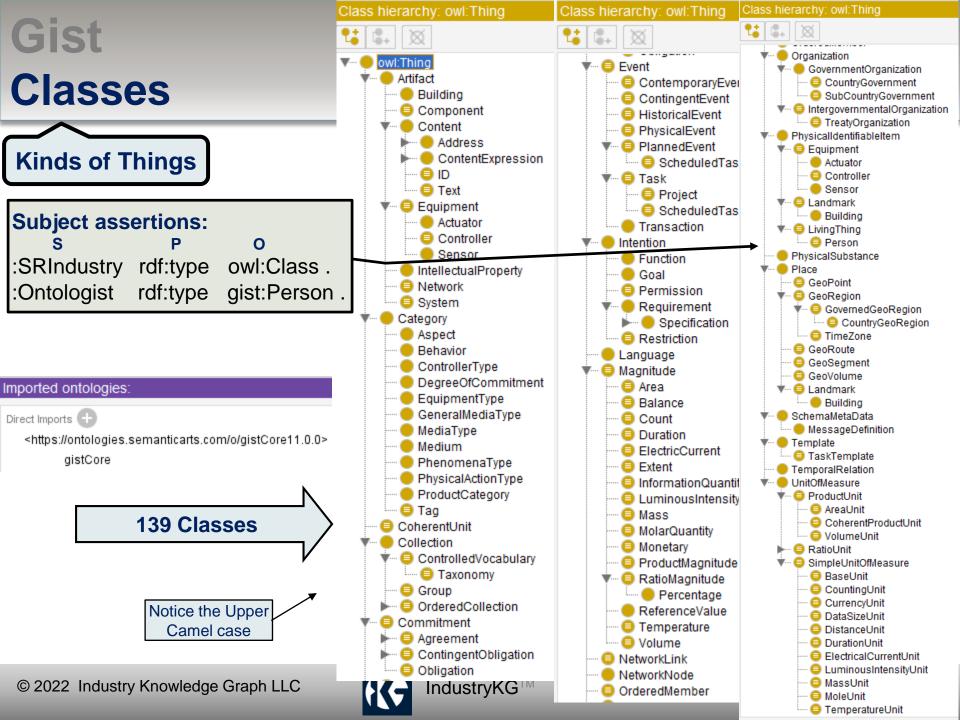
Built by Stanford University. Open source.

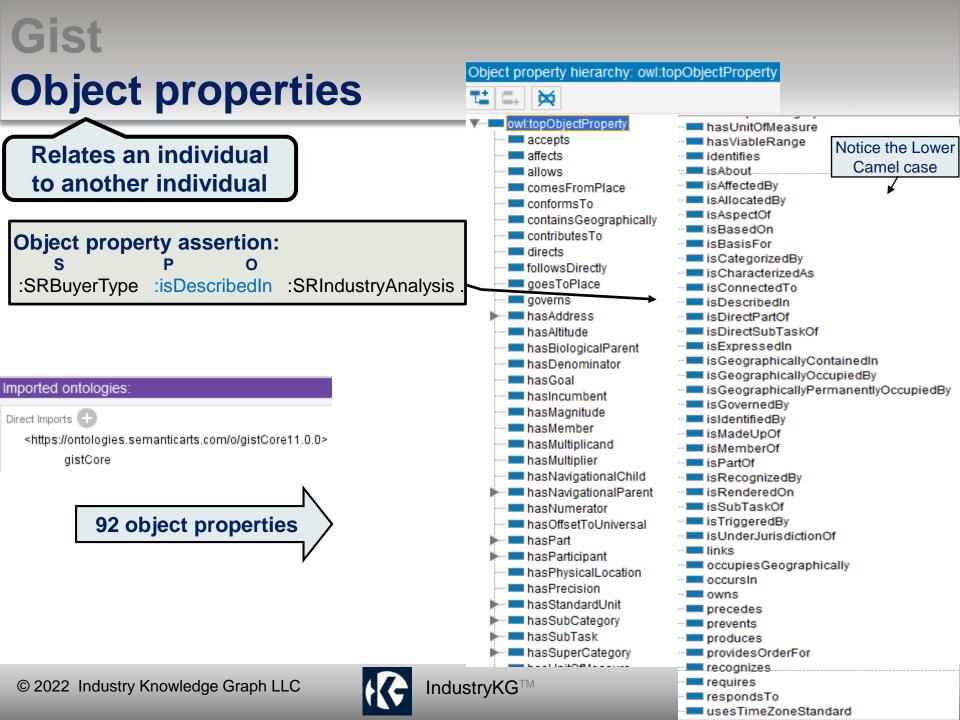
Now It's Time to WRITE a complete Ontology. What do you do after taking a deep breath?

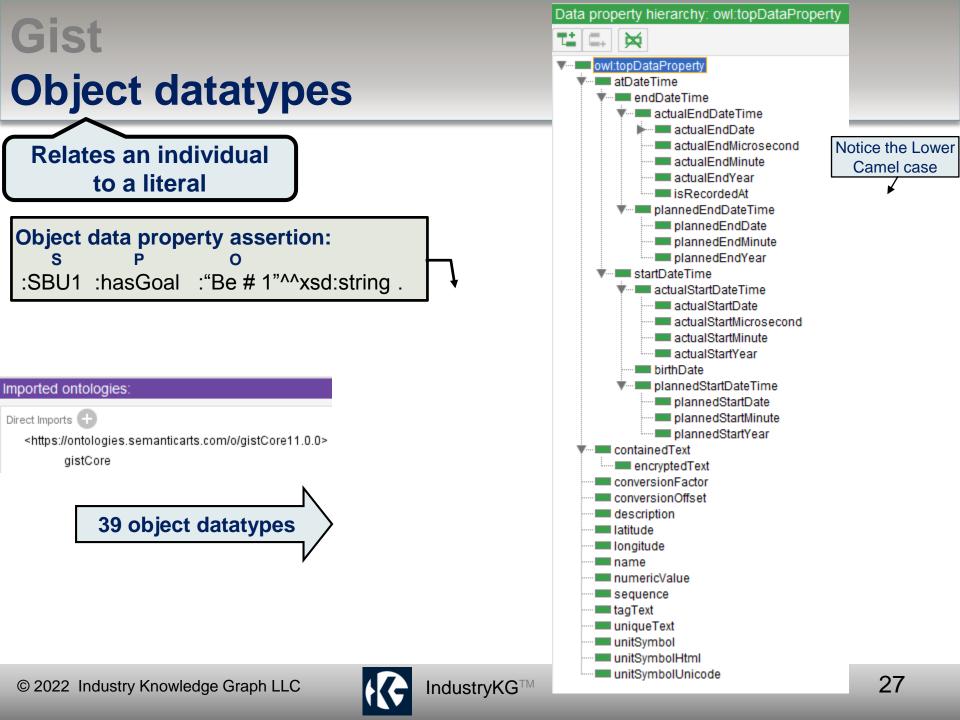

To create a new .ttl file right click for new file... Select text file and name it something.ttl

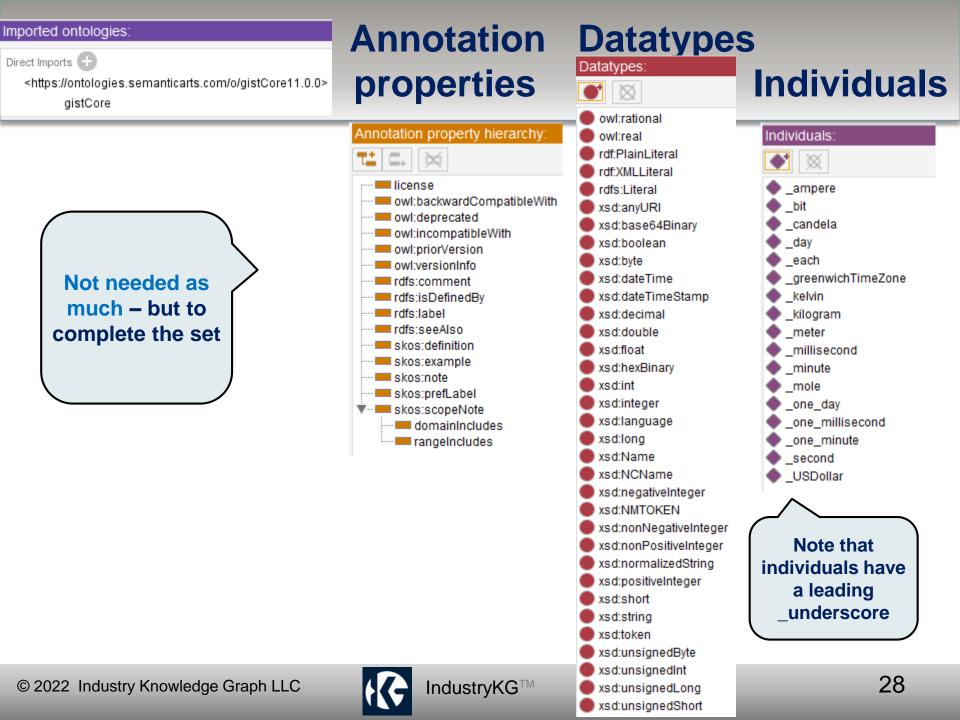
- Copy the OWL standard @prefix stuff to a .TTL file.
- Copy the gist prefix
- Think about what to call your @prefix namespace
- Get gist (to have a lot of the triples / vocabulary done for you where great thought went into the terms). To download gist, go to <u>https://www.semanticarts.com/gist/</u> (gist is free via the Creative Commons 3.0 attribution share-alike license.)
- Write your first triple (Form: IRI.xxx IRI.xxx IRI.xxx .)
- Get Turtle http://semantechs.co.uk/turtle-editor-viewer/
 and test using Turtle
- IF successful, THEN Repeat. ELSE Fix.

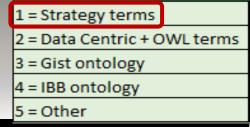
(Remember to end each triple with a space followed by a semicolon, comma, or period)


To Create A New Ontology Copy, Paste + Add One New Triple At A Time




More specifically, because each resource needs an IRI, it will look like this → IRI:xxx IRI:xxx IRI:xxx .


The following slides show the initial vocabulary you will often use ->



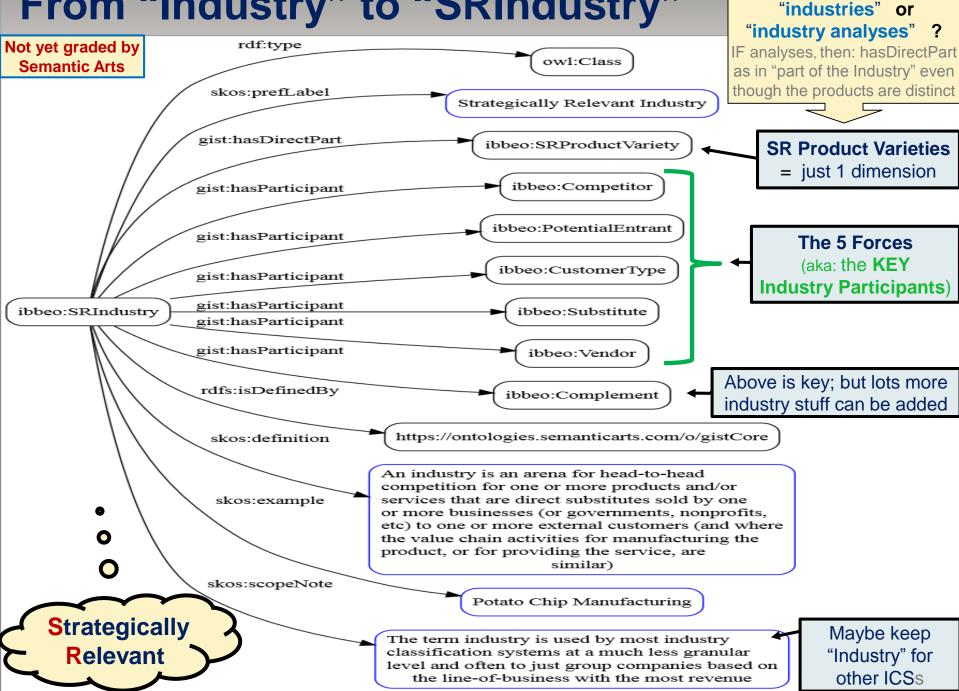
A Controlled Vocabulary for Strategic Planning & Data-Centric Terms

Strategy		D = Ontology						
Ontology	Sort A-B			OWL				
Other	TERM	o Definition	altLabel	S P O Concept.	Source	Scoring	Examples	Parent
1	ABILITY TO BACKWARD INTEGRAT	ABILITY TO BACKWARD INTEGRATE - refers to the ability	/ fo	N/A	Porter			
1	ACCESS TO DISTRIBUTION CHANN	ACCESS TO DISTRIBUTION CHANNELS - refers to the abil	ity	N/A				
1	ACCESS TO SUPPLIERS	ACCESS TO SUPPLIERS - could represent a barrier to enti	ry i	N/A				
1	ACTIVITY COST	ACTIVITY COST - is the cost of an activity and can be calc	cula	N/A		ms		Value Chain
1	Ad-Hoc Industry Collection	An Adhoc Industry Collection is a collection of Industrie	<u> </u>	N/A		terms	attery Industries	
1	ASSET REPLACEMENT COST	ASSET REPLACE SNT COST - is an estimate of the curren	nt r	C+r	ategy			
1	AVERAGE UNIT COSTS	AVERAGE	/ th	50				
1	BACKWARD IN		ao		- orter			
1	BARGAINING Includes	many Porter terms + terms	ativ	N/A	Porter			Five Industry Forces
1	BARGAINING that In		ive	N/A	Porter			Five Industry Forces
1	BARRIERS TO E		r th	N/A	Porter			Five Industry Forces
1	BENCHMARKING	BENCHMARKING - the process of analyzing and evaluati	ing	N/A				
1	BRAND IDENTITY	BRAND IDENTITY - a trademark or distinctive name iden	tif	N/A				
1	BUNDLING	BUNDLING - selling distinct but complementary product	ts t	N/A	Porter			
1	BUSINESS INTERRUPTION RISK	BUSINESS INTERRUPTION RISK - refers to loss of fixed co	ost	N/A				
1	BUSINESS UNIT	BUSINESS UNIT - A very general term that means many	thi	N/A				Strategic Business Unit
1	BUSINESS Unit MISSION	BUSINESS MISSION - A statement clarifying the purpose	e of	N/A				Business Unit Competitiv
1	BUSINESS Unit OBJECTIVES	BUSINESS OBJECTIVES - a listing of what the business pl	an	N/A				Business Unit Competitiv
1	BUSINESS Unit RECOVERY PLAN	BUSINESS RECOVERY PLAN - includes information and p	roc	N/A				Business Unit Competitiv
1	BUSINESS Unit RISK	BUSINESS RISK - is the uncertainty inherent in business	ор	N/A				Business Unit Competitiv
1	BUSINESS UNIT STRATEGIC PLANI	BUSINESS UNIT STRATEGIC PLANNING - See Strategic Bu	isin	N/A				Corporate Strategy Devel
1	BUSINESS UNIT VISION	BUSINESS VISION - a building process which has as its fo	oun	N/A				Business Unit Competitiv
1	BUYER INFORMATION	BUYER INFORMATION - refers to whether the buyer has	; in	N/A				
1	BUYER PURCHASE CRITERIA	BUYER PURCHASE CRITERIA - refers to what the buyer (s	ipe	N/A	Porter			Purchase Criteria
1	BUYER SEGMENT	BUYER SEGMENT - refers to a strategically relevant buye	er t	N/A	Porter			
1	BUYER TYPE	BUYER TYPE - encompasses such things as the buyer's si	ze,	N/A	Porter			
1	CAPACITY UTILIZATION	CAPACITY UTILIZATION - refers to activities and assets v	vitł	N/A				
1	CAPITAL REQUIREMENTS	CAPITAL REQUIREMENTS - the amount of financial resou	urci	N/A				
1	CASH FLOW	CASH FLOW - is equal to Cash Inflow minus Cash Outflo	w.	N/A				
1	CHANGE IN SHAREHOLDER VALUE	CHANGE IN SHAREHOLDER VALUE - is the change in shar	reh	N/A				

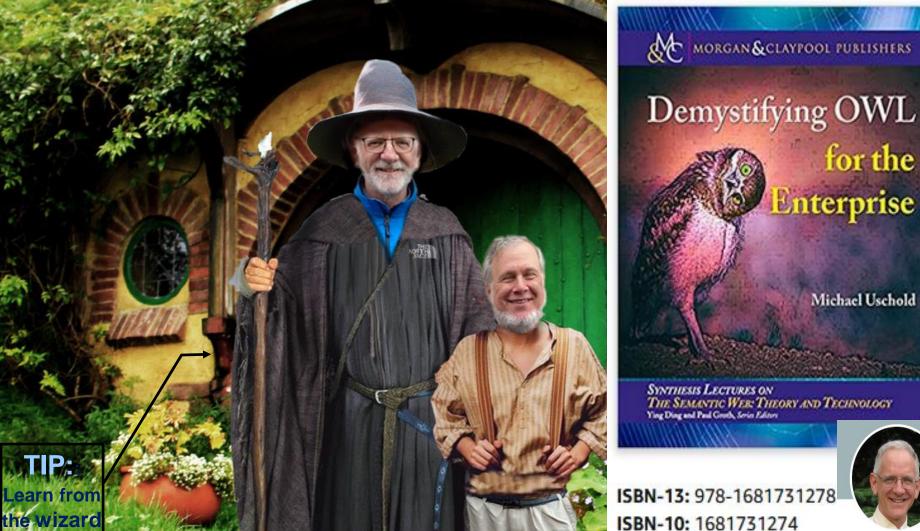
A Controlled Vocabulary for Strategic Planning & Data-Centric Terms

1 = Strategy terms 2 = Data Centric + OWL terms 3 = Gist ontology 4 = IBB ontology 5 = Other

Strategy		o = Ontology						
Ontology Other	Sort A-B TERM (skos:prefLabel)	o skos:Definition	skos:altLabel	OWL S P O Concept.	6	Scoring	European land	Parent
2	Axiom	Axioms are the triples that make up the formal definition		S P O Concept.	The DCR p.185		Examples	rarent
2	Basel Register of Thesauri, Ontol		BARTOC		The Dely p.165		1	
2	Blank Node	A blank node in an RDF graph is drawn from an infinite set			W3C			
2	CBox	CBox – old terminology. Just think of categories and taxon			WSC	c terms		
2	Chief Information Officer	Chief Information Officer	CIO			c terme		
2	Closed-world Reasoner	Closed-world Reasoner – a system that can't tell the diffe			contru			
2	Collection	Collection – related things. Example: jury. Use isMember		anta-	Cerre			
2	Concept	An owl:Class or an owl:Property (usually an object proper		Data				
2	Content Management Systems	CMS - Content Management Systems (probably correct)						
2	Controlled Vocabulary	Controlled Vocabulary - Words used to tag units of data	CIVID					
2	Corpus Analysis	Corpus Analysis - Aka: Corpus Management = ability to an	Cornis Managem	ent				
2	Covering Concept	A Covering Concept is a broader concept (where the detail			The DCR p.299			Concept
2	Data Fabric Architecture	Data Fabric Architecture A framework for easy information			ine ben pizzz			concept
2	Data Property	Data Property - relates an individual to a literal. Data Prop						Property
2	Data Structures	Data Structures					Tables; Object Or	
2	Data-Centric Architecture	Data-Centric Architecture is a measure an organization's a			McComb		,	
2	Datascape	Datascape refers to the totality of the data under manage			The DCR p.122			
2	Datatype	Datatype – a set of literals. A kind of literal is rdfs:Datatyp						Resource Description Fra
2	DBpedia SPAQL endpoint	DBpedia SPAQL endpoint – a database version of Wikiped			\leq			
2	Detailed Concept	Detailed Concept is a specialization (contrast with the bro						Concept
2	Directed Graph	Directed Graph – a set of triples (a set of nodes with arrow	Inc	ludes ma	anv term	ns from Th	e	
2	Document Management System	DMS - Document Management System to store, track and	DMS		-			
2	Domain	Domain - What kind of thing must the Subject be, in a trip	Da	ita-Centri	C Revol	ution (DCF	()	
2	E6tools	E6tools – an OWL syntax. It is a compact visual syntax						Web Ontology Language
2	Edge	Edge						
2	Enterprise Data Management Co	EDMC - Enterprise Data Management Council developed a	EDMC					
2	Enterprise Datascape	Enterprise Datascape -						
2	Enterprise Ontology	Enterprise Ontology						
2	EuroVoc	EuroVoc - A multilingual, multidisciplinary thesaurus cove						
-	Extract. Transform. Load.	ETL process - Extract. Transform. Load. (e.g. combine RDF t	ETL					
2	Extract. Hallsform, Load.							
2	Facet	Facet						
_					p 308			


A Controlled Vocabulary for **Strategic Planning & Data-Centric Terms**

Strategy		0 =	Ontology						
Ontology	Sort A-B				OWL				
Other	TERM	0	Definition	altLabel	S P O Concept.	Source S	Scoring	Examples	Parent
3	gist:TemporalRelation	0	[Maybe enter skos: definition for this Class]			Semantic Arts			
3	gist:Text	0	[Maybe enter skos: definition for this Class]			Semantic Arts			Gist Concept
3	gist:TimeInstant	0	[Maybe enter skos: definition for this Class]			Semantic Art			
3	gist:TimeZone	0	[Maybe enter skos: definition for this Class]				NOGY		gist:GeoRegion
3	gist:TimeZoneStandard	0	[Maybe enter skos: definition for this Class]			na On			gist:Specification
3	gist:Transaction	0	An event which has an effect on at least one accumulator	5	Gist &	BD -			gist:Event
3	gist:UnitOfMeasure	0	[Maybe enter skos: definition for this Class]		Gista	ac Arts			
3	gist:Volume	0	Three-dimensional space, or equivalent fluid measureme			Semantic Arts			gist:Magnitude
3	gist:VolumeUnit	0	[Maybe enter skos: definition for this Class]			Semantic Arts			gist:ProductUnit
4	ibbAllTBox					Semantic Arts			ibbeo
4	ibbeo:	0	<pre>@prefix ibbeo: <https: ontologies.industrybuildingblock<="" pre=""></https:></pre>	:	prefix	Semantic Arts			ibbeo
4	ibbeo:AdhocIndustryCollection	0	A collection of industries grouped together due to someth	AHIC	Class	Semantic Arts			ibbeo
4	ibbeo:AnzsicCode	0	A code from the ANZSIC industry classification system		Class	Semantic Arts			ibbeo
4	ibbeo:BrandName	0	Σ		owl:Class)			
4	ibbeo:CategoryCharacteristic		rdf:type			/			
4	ibbeo:Characteristic			(Adhoc Industry (Troup			
4	ibbeo:CharacteristicValue	0	skos:prefLabel			noop)	(Adha	ocIndustry	Group
4	ibbeo:ChargingModel	0		A collection	n of industries gro	uped together di	``		
4	ibbeo:competesIn	0	skos:definition		nething they have			changed to	
4	ibbeo:competesWith	0				_	Adhocl	ndustryCo	ollection)
4	ibbeo:CpcCode	0	(ibbeo:AdhocIndustryGroup) skos:example rdfs:subClassOf		► Stadium snaci	cs)		5	/
4	ibbeo:directlyCompetesIn	0	fdis:subclassOf						
4	ibbeo:directlyProducedBy	0	rdfs:subClassOf		ibbeo:IndustryG	roup			
4	ibbeo:hasBrandCompetitor	0		(
4	ibbeo:hasCompetingOrganizatio	0	rdfs:subClassOf		gist:Collectio	n)		6.4	owl:Restriction
4	ibbeo:hasImm				gist.Conectio		rd	f:type	own.itesurieuoin
4	ibbeo:hasLega Plus,	0	f course, gist + IBB				owl:or	nProperty (
4	ibbeo:hasNun onto		ogy terms (uri:xxx)		► b4_genid4)		eValuesFrom ►	gist:hasMember
4	ibbeo:hasPrin	-							
4	ibbeo:hasTopParent	0							(ibbeo:Industry)
© 2	022 Industry Knowled	dge	e Graph LLC	ryKG™					31



From "Industry" to "SRIndustry"

Is IBB data about 23,000

owl:Class x:Sorcerer rdf:type rdfs:subClassOf x:Ontologist x:Sorcerer

© 2022 Industry Knowledge Graph LLC

Michael Uschold

for the

THE SEMANTIC WER: THEORY AND TECHNOLOGY Ying Ding and Paul Groth, Series Editors

Industry Knowledge Graph LLC says

Industry Knowledge Graph solution for Business Execs™

Thank you!

Part of our:

Data-Centric Strategic Planning (DCSP) Series

